Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Biotechnol (NY) ; 25(1): 174-191, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36622459

RESUMO

The eastern oyster Crassostrea virginica is a major aquaculture species for the USA. The sustainable development of eastern oyster aquaculture depends upon the continued improvement of cultured stocks through advanced breeding technologies. The Eastern Oyster Breeding Consortium (EOBC) was formed to advance the genetics and breeding of the eastern oyster. To facilitate efficient genotyping needed for genomic studies and selection, the consortium developed two single-nucleotide polymorphism (SNP) arrays for the eastern oyster: one screening array with 566K SNPs and one breeders' array with 66K SNPs. The 566K screening array was developed based on whole-genome resequencing data from 292 oysters from Atlantic and Gulf of Mexico populations; it contains 566,262 SNPs including 47K from protein-coding genes with a marker conversion rate of 48.34%. The 66K array was developed using best-performing SNPs from the screening array, which contained 65,893 oyster SNPs including 22,984 genic markers with a calling rate of 99.34%, a concordance rate of 99.81%, and a much-improved marker conversion rate of 92.04%. Null alleles attributable to large indels were found in 13.1% of the SNPs, suggesting that copy number variation is pervasive. Both arrays provided easy identification and separation of selected stocks from wild progenitor populations. The arrays contain 31 mitochondrial SNPs that allowed unambiguous identification of Gulf mitochondrial genotypes in some Atlantic populations. The arrays also contain 756 probes from 13 oyster and human pathogens for possible detection. Our results show that marker conversion rate is low in high polymorphism species and that the two-step process of array development can greatly improve array performance. The two arrays will advance genomic research and accelerate genetic improvement of the eastern oyster by delineating genetic architecture of production traits and enabling genomic selection. The arrays also may be used to monitor pedigree and inbreeding, identify selected stocks and their introgression into wild populations, and assess the success of oyster restoration.


Assuntos
Crassostrea , Animais , Crassostrea/genética , Variações do Número de Cópias de DNA , Genoma , Genômica , Genótipo , Polimorfismo de Nucleotídeo Único
2.
Sci Rep ; 12(1): 14229, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987959

RESUMO

Two homoeologous QTLs for number of spikelets per spike (SPS) were mapped on chromosomes 7AL and 7BL using two wheat MAGIC populations. Sets of lines contrasting for the QTL on 7AL were developed which allowed for the validation and fine mapping of the 7AL QTL and for the identification of a previously described candidate gene, WHEAT ORTHOLOG OF APO1 (WAPO1). Using transgenic overexpression in both a low and a high SPS line, we provide a functional validation for the role of this gene in determining SPS also in hexaploid wheat. We show that the expression levels of this gene positively correlate with SPS in multiple MAGIC founder lines under field conditions as well as in transgenic lines grown in the greenhouse. This work highlights the potential use of WAPO1 in hexaploid wheat for further yield increases. The impact of WAPO1 and SPS on yield depends on other genetic and environmental factors, hence, will require a finely balanced expression level to avoid the development of detrimental pleiotropic phenotypes.


Assuntos
Pão , Triticum , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Fenótipo , Locos de Características Quantitativas , Triticum/genética
3.
Evol Appl ; 15(4): 631-644, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35505884

RESUMO

Genomic information was included for the first time in the prediction of breeding values for Atlantic salmon within the Australian Salmon Enterprises of Tasmania Pty Ltd selective breeding program in 2016. The process to realize genomic selection in the breeding program begun in 2014 with the scheme finalized and fully implemented for the first time in 2018. The high potential of within family selection to accelerate genetic gain, something not possible using the traditional pedigree-based approach, provided the impetus for implementation. Efficient and effective genotyping platforms are essential for genomic selection. Genotype data from high density arrays revealed extensive persistence of linkage disequilibrium in the Tasmania Atlantic salmon population, resulting in high accuracies of both imputation and genomic breeding values when using imputed data. Consequently, a low-density novel genotype-by-sequence assay was designed and incorporated into the scheme. Through the use of a static high- and dynamic low-density genotyping platforms, an optimized genotyping scheme was devised and implemented such that all individuals in every year class are genotyped efficiently while maximizing the genetic gains and minimizing costs. The increase in the rates of genetic gain attributed to the implementation of genomic selection is significant across both the breeding programs primary and secondary traits. Substantial improvement in the ability to select parents prior to progeny testing is observed across multiple years. The resultant economic impacts for the industry are considerable based on the increases in genetic gain for traits achieved within the breeding program and the use of genomic selection for commercial production.

4.
BMC Genomics ; 20(1): 139, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30770720

RESUMO

BACKGROUND: A key developmental transformation in the life of all vertebrates is the transition to sexual maturity, whereby individuals are capable of reproducing for the first time. In the farming of Atlantic salmon, early maturation prior to harvest size has serious negative production impacts. RESULTS: We report genome wide association studies (GWAS) using fish measured for sexual maturation in freshwater or the marine environment. Genotypic data from a custom 50 K single nucleotide polymorphism (SNP) array was used to identify 13 significantly associated SNP for freshwater maturation with the most strongly associated on chromosomes 10 and 11. A higher number of associations (48) were detected for marine maturation, and the two peak loci were found to be the same for both traits. The number and broad distribution of GWAS hits confirmed a highly polygenetic nature, and GWAS performed separately within males and females revealed sex specific genetic behaviour for loci co-located with positional candidate genes phosphatidylinositol-binding clathrin assembly protein-like (picalm) and membrane-associated guanylate kinase, WW and PDZ domain-containing protein 2 (magi2). CONCLUSIONS: The results extend earlier work and have implications for future applied breeding strategies to delay maturation in this important aquaculture species.


Assuntos
Pesqueiros , Herança Multifatorial , Salmo salar/genética , Maturidade Sexual/genética , Maturidade Sexual/fisiologia , Animais , Sequência de Bases , Cruzamento , Bases de Dados Genéticas , Feminino , Água Doce , Expressão Gênica , Frequência do Gene , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Guanilato Quinases/genética , Masculino , Proteínas Monoméricas de Montagem de Clatrina/genética , Polimorfismo de Nucleotídeo Único , Água do Mar , Fatores Sexuais , Tasmânia , Sequenciamento Completo do Genoma
5.
Sci Rep ; 8(1): 5664, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29618750

RESUMO

Teleost fish exhibit a remarkable diversity in the control of sex determination, offering the opportunity to identify novel differentiation mechanisms and their ecological consequences. Here, we perform GWAS using 4715 fish and 46,501 SNP to map sex determination to three separate genomic locations in Atlantic salmon (Salmo salar). To characterize each, whole genome sequencing was performed to 30-fold depth of coverage using 20 fish representing each of three identified sex lineages. SNP polymorphism reveals male fish carry a single copy of the male specific region, consistent with an XX/XY or male heterogametric sex system. Haplotype analysis revealed deep divergence between the putatively ancestral locus on chromosome 2, compared with loci on chromosomes 3 and 6. Haplotypes in fish carrying either the chromosome 3 or 6 loci were nearly indistinguishable, indicating a founding event that occurred following the speciation event that defined Salmo salar from other salmonids. These findings highlight the evolutionarily fluid state of sex determination systems in salmonids, and resolve to the sequence level differences in animals with divergent sex lineages.


Assuntos
Cromossomos , Evolução Molecular , Loci Gênicos , Polimorfismo de Nucleotídeo Único , Salmo salar/genética , Processos de Determinação Sexual/genética , Animais , Feminino , Genoma , Genômica , Masculino , Sequenciamento Completo do Genoma
6.
J Exp Bot ; 67(12): 3709-18, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26873980

RESUMO

Rhizosheaths comprise soil bound to roots, and in wheat (Triticum aestivum L.) rhizosheath size correlates with root hair length. The aims of this study were to determine the effect that a large rhizosheath has on the phosphorus (P) acquisition by wheat and to investigate the genetic control of rhizosheath size in wheat grown on acid soil.Near-isogenic wheat lines differing in rhizosheath size were evaluated on two acid soils. The soils were fertilized with mineral nutrients and included treatments with either low or high P. The same soils were treated with CaCO3 to raise the pH and detoxify Al(3+) Genotypic differences in rhizosheath size were apparent only when soil pH was low and Al(3+) was present. On acid soils, a large rhizosheath increased shoot biomass compared with a small rhizosheath regardless of P supply. At low P supply, increased shoot biomass could be attributed to a greater uptake of soil P, but at high P supply the increased biomass was due to some other factor. Generation means analysis indicated that rhizosheath size on acid soil was controlled by multiple, additive loci. Subsequently, a quantitative trait loci (QTL) analysis of an F6 population of recombinant inbred lines identified five major loci contributing to the phenotype together accounting for over 60% of the total genetic variance. One locus on chromosome 1D accounted for 34% of the genotypic variation. Genetic control of rhizosheath size appears to be relatively simple and markers based on the QTL provide valuable tools for marker assisted breeding.


Assuntos
Fósforo/metabolismo , Locos de Características Quantitativas , Triticum/crescimento & desenvolvimento , Triticum/genética , Concentração de Íons de Hidrogênio , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Solo/química
7.
Genome Biol ; 16: 93, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25962727

RESUMO

BACKGROUND: Next-generation sequencing technologies provide new opportunities to identify the genetic components responsible for trait variation. However, in species with large polyploid genomes, such as bread wheat, the ability to rapidly identify genes underlying quantitative trait loci (QTL) remains non-trivial. To overcome this, we introduce a novel pipeline that analyses, by RNA-sequencing, multiple near-isogenic lines segregating for a targeted QTL. RESULTS: We use this approach to characterize a major and widely utilized seed dormancy QTL located on chromosome 4AL. It exploits the power and mapping resolution afforded by large multi-parent mapping populations, whilst reducing complexity by using multi-allelic contrasts at the targeted QTL region. Our approach identifies two adjacent candidate genes within the QTL region belonging to the ABA-induced Wheat Plasma Membrane 19 family. One of them, PM19-A1, is highly expressed during grain maturation in dormant genotypes. The second, PM19-A2, shows changes in sequence causing several amino acid alterations between dormant and non-dormant genotypes. We confirm that PM19 genes are positive regulators of seed dormancy. CONCLUSIONS: The efficient identification of these strong candidates demonstrates the utility of our transcriptomic pipeline for rapid QTL to gene mapping. By using this approach we are able to provide a comprehensive genetic analysis of the major source of grain dormancy in wheat. Further analysis across a diverse panel of bread and durum wheats indicates that this important dormancy QTL predates hexaploid wheat. The use of these genes by wheat breeders could assist in the elimination of pre-harvest sprouting in wheat.


Assuntos
Regulação da Expressão Gênica de Plantas , Dormência de Plantas/genética , Proteínas de Plantas/genética , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Perfilação da Expressão Gênica , Inativação Gênica , Genótipo , Germinação , Família Multigênica , Poliploidia , Locos de Características Quantitativas , Análise de Sequência de RNA , Triticum/classificação
8.
Theor Appl Genet ; 128(6): 999-1017, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25855139

RESUMO

KEY MESSAGE: MAGIC populations present novel challenges and opportunities in crops due to their complex pedigree structure. They offer great potential both for dissecting genomic structure and for improving breeding populations. The past decade has seen the rise of multiparental populations as a study design offering great advantages for genetic studies in plants. The genetic diversity of multiple parents, recombined over several generations, generates a genetic resource population with large phenotypic diversity suitable for high-resolution trait mapping. While there are many variations on the general design, this review focuses on populations where the parents have all been inter-mated, typically termed Multi-parent Advanced Generation Intercrosses (MAGIC). Such populations have already been created in model animals and plants, and are emerging in many crop species. However, there has been little consideration of the full range of factors which create novel challenges for design and analysis in these populations. We will present brief descriptions of large MAGIC crop studies currently in progress to motivate discussion of population construction, efficient experimental design, and genetic analysis in these populations. In addition, we will highlight some recent achievements and discuss the opportunities and advantages to exploit the unique structure of these resources post-QTL analysis for gene discovery.


Assuntos
Cruzamento , Produtos Agrícolas/genética , Cruzamentos Genéticos , Variação Genética , Agricultura/métodos , Mapeamento Cromossômico , Epistasia Genética , Ligação Genética , Genótipo , Fenótipo , Locos de Características Quantitativas
9.
G3 (Bethesda) ; 4(9): 1569-84, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25237109

RESUMO

Multiparent Advanced Generation Inter-Cross (MAGIC) populations are now being utilized to more accurately identify the underlying genetic basis of quantitative traits through quantitative trait loci (QTL) analyses and subsequent gene discovery. The expanded genetic diversity present in such populations and the amplified number of recombination events mean that QTL can be identified at a higher resolution. Most QTL analyses are conducted separately for each trait within a single environment. Separate analysis does not take advantage of the underlying correlation structure found in multienvironment or multitrait data. By using this information in a joint analysis-be it multienvironment or multitrait - it is possible to gain a greater understanding of genotype- or QTL-by-environment interactions or of pleiotropic effects across traits. Furthermore, this can result in improvements in accuracy for a range of traits or in a specific target environment and can influence selection decisions. Data derived from MAGIC populations allow for founder probabilities of all founder alleles to be calculated for each individual within the population. This presents an additional layer of complexity and information that can be utilized to identify QTL. A whole-genome approach is proposed for multienvironment and multitrait QTL analysis in MAGIC. The whole-genome approach simultaneously incorporates all founder probabilities at each marker for all individuals in the analysis, rather than using a genome scan. A dimension reduction technique is implemented, which allows for high-dimensional genetic data. For each QTL identified, sizes of effects for each founder allele, the percentage of genetic variance explained, and a score to reflect the strength of the QTL are found. The approach was demonstrated to perform well in a small simulation study and for two experiments, using a wheat MAGIC population.


Assuntos
Genoma de Planta , Modelos Genéticos , Locos de Características Quantitativas , Triticum/genética , Simulação por Computador , Cruzamentos Genéticos , Flores , Genótipo , Sementes/anatomia & histologia , Triticum/anatomia & histologia , Triticum/fisiologia
10.
Theor Appl Genet ; 127(8): 1753-70, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24927820

RESUMO

KEY MESSAGE: An efficient whole genome method of QTL analysis is presented for Multi-parent advanced generation integrated crosses. Multi-parent advanced generation inter-cross (MAGIC) populations have been developed for mice and several plant species and are useful for the genetic dissection of complex traits. The analysis of quantitative trait loci (QTL) in these populations presents some additional challenges compared with traditional mapping approaches. In particular, pedigree and marker information need to be integrated and founder genetic data needs to be incorporated into the analysis. Here, we present a method for QTL analysis that utilizes the probability of inheriting founder alleles across the whole genome simultaneously, either for intervals or markers. The probabilities can be found using three-point or Hidden Markov Model (HMM) methods. This whole-genome approach is evaluated in a simulation study and it is shown to be a powerful method of analysis. The HMM probabilities lead to low rates of false positives and low bias of estimated QTL effect sizes. An implementation of the approach is available as an R package. In addition, we illustrate the approach using a bread wheat MAGIC population.


Assuntos
Mapeamento Cromossômico/métodos , Cruzamentos Genéticos , Genoma de Planta/genética , Locos de Características Quantitativas/genética , Triticum/genética , Animais , Cromossomos de Plantas/genética , Simulação por Computador , Ligação Genética , Loci Gênicos , Cadeias de Markov , Camundongos , Probabilidade
11.
Plant Biotechnol J ; 12(2): 219-30, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24151921

RESUMO

Identification of alleles towards the selection for improved seedling vigour is a key objective of many wheat breeding programmes. A multiparent advanced generation intercross (MAGIC) population developed from four commercial spring wheat cultivars (cvv. Baxter, Chara, Westonia and Yitpi) and containing ca. 1000 F(2) -derived, F(6:7) RILs was assessed at two contrasting soil temperatures (12 and 20 °C) for shoot length and coleoptile characteristics length and thickness. Narrow-sense heritabilities were high for coleoptile and shoot length (h(2) = 0.68-0.70), indicating a strong genetic basis for the differences among progeny. Genotypic variation was large, and distributions of genotype means were approximately Gaussian with evidence for transgressive segregation for all traits. A number of significant QTL were identified for all early growth traits, and these were commonly repeatable across the different soil temperatures. The largest negative effects on coleoptile lengths were associated with Rht-B1b (-8.2%) and Rht-D1b (-10.9%) dwarfing genes varying in the population. Reduction in coleoptile length with either gene was particularly large at the warmer soil temperature. Other large QTL for coleoptile length were identified on chromosomes 1A, 2B, 4A, 5A and 6B, but these were relatively smaller than allelic effects at the Rht-B1 and Rht-D1 loci. A large coleoptile length effect allele (a = 5.3 mm at 12 °C) was identified on chromosome 1AS despite the relatively shorter coleoptile length of the donor Yitpi. Strong, positive genetic correlations for coleoptile and shoot lengths (r(g) = 0.85-0.90) support the co-location of QTL for these traits and suggest a common physiological basis for both. The multiparent population has enabled the identification of promising shoot and coleoptile QTL despite the potential for the confounding of large effect dwarfing gene alleles present in the commercial parents. The incidence of these alleles in commercial wheat breeding programmes should facilitate their ready implementation in selection of varieties with improved establishment and early growth.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Cotilédone/genética , Locos de Características Quantitativas/genética , Plântula/genética , Triticum/genética , Alelos , Cruzamento , Cotilédone/crescimento & desenvolvimento , Cruzamentos Genéticos , Genômica , Genótipo , Fenótipo , Proteínas de Plantas/genética , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Solo , Temperatura , Triticum/crescimento & desenvolvimento
12.
PLoS One ; 8(7): e69187, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935949

RESUMO

Continuous-time Markov processes are often used to model the complex natural phenomenon of sequence evolution. To make the process of sequence evolution tractable, simplifying assumptions are often made about the sequence properties and the underlying process. The validity of one such assumption, time-homogeneity, has never been explored. Violations of this assumption can be found by identifying non-embeddability. A process is non-embeddable if it can not be embedded in a continuous time-homogeneous Markov process. In this study, non-embeddability was demonstrated to exist when modelling sequence evolution with Markov models. Evidence of non-embeddability was found primarily at the third codon position, possibly resulting from changes in mutation rate over time. Outgroup edges and those with a deeper time depth were found to have an increased probability of the underlying process being non-embeddable. Overall, low levels of non-embeddability were detected when examining individual edges of triads across a diverse set of alignments. Subsequent phylogenetic reconstruction analyses demonstrated that non-embeddability could impact on the correct prediction of phylogenies, but at extremely low levels. Despite the existence of non-embeddability, there is minimal evidence of violations of the local time homogeneity assumption and consequently the impact is likely to be minor.


Assuntos
Evolução Molecular , Cadeias de Markov , Modelos Genéticos , Mutação , Algoritmos , Animais , Humanos , Íntrons , Camundongos , Nucleotídeos/genética , Fases de Leitura Aberta/genética , Filogenia , Ratos
13.
Genet Res (Camb) ; 94(6): 291-306, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23374240

RESUMO

Mapping of quantitative trait loci (QTLs) underlying variation in quantitative traits continues to be a powerful tool in genetic study of plants and other organisms. Whole genome average interval mapping (WGAIM), a mixed model QTL mapping approach using all intervals or markers simultaneously, has been demonstrated to outperform composite interval mapping, a common approach for QTL analysis. However, the advent of high-throughput high-dimensional marker platforms provides a challenge. To overcome this, a dimension reduction technique is proposed for WGAIM for efficient analysis of a large number of markers. This approach results in reduced computing time as it is dependent on the number of genetic lines (or individuals) rather than the number of intervals (or markers). The approach allows for the full set of potential QTL effects to be recovered. A proposed random effects version of WGAIM aims to reduce bias in the estimated size of QTL effects. Lastly, the two-stage outlier procedure used in WGAIM is replaced by a single stage approach to reduce possible bias in the selection of putative QTL in both WGAIM and the random effects version. Simulation is used to demonstrate the efficiency of the dimension reduction approach as well as demonstrate that while the approaches are very similar, the random WGAIM performs better than the original and modified fixed WGAIM by reducing bias and in terms of mean square error of prediction of estimated QTL effects. Finally, an analysis of a doubled haploid population is used to illustrate the three approaches.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Locos de Características Quantitativas/genética , Modelos Genéticos , Característica Quantitativa Herdável , Triticum/genética
14.
BMC Proc ; 4(Suppl 1 Proceedings of the 13th European workshop on QTL map): S5, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20380759

RESUMO

UNLABELLED: Genomic selection describes a selection strategy based on genomic estimated breeding values (GEBV) predicted from dense genetic markers such as single nucleotide polymorphism (SNP) data. Different Bayesian models have been suggested to derive the prediction equation, with the main difference centred around the specification of the prior distributions. METHODS: The simulated dataset of the 13(th) QTL-MAS workshop was analysed using four Bayesian approaches to predict GEBV for animals without phenotypic information. Different prior distributions were assumed to assess their affect on the accuracy of the predicted GEBV. CONCLUSION: All methods produced GEBV that were highly correlated with the true breeding values. The models appear relatively insensitive to the choice of prior distributions for QTL-MAS data set and this is consistent with uniformity of performance of different methods found in real data.

15.
BMC Proc ; 4 Suppl 1: S9, 2010 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-20380763

RESUMO

BACKGROUND: The simulated dataset of the 13th QTL-MAS workshop was analysed to i) detect QTL and ii) predict breeding values for animals without phenotypic information. Several parameterisations considering all SNP simultaneously were applied using Gibbs sampling. RESULTS: Fourteen QTL were detected at the different time points. Correlations between estimated breeding values were high between models, except when the model was used that assumed that all SNP effects came from one distribution. The model that used the selected 14 SNP found associated with QTL, gave close to unity correlations with the full parameterisations. CONCLUSIONS: Nine out of 18 QTL were detected, however the six QTL for inflection point were missed. Models for genomic selection were indicated to be fairly robust, e.g. with respect to accuracy of estimated breeding values. Still, it is worthwhile to investigate the number QTL underlying the quantitative traits, before choosing the model used for genomic selection.

16.
Genet Sel Evol ; 41: 51, 2009 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-19930712

RESUMO

BACKGROUND: Two key findings from genomic selection experiments are 1) the reference population used must be very large to subsequently predict accurate genomic estimated breeding values (GEBV), and 2) prediction equations derived in one breed do not predict accurate GEBV when applied to other breeds. Both findings are a problem for breeds where the number of individuals in the reference population is limited. A multi-breed reference population is a potential solution, and here we investigate the accuracies of GEBV in Holstein dairy cattle and Jersey dairy cattle when the reference population is single breed or multi-breed. The accuracies were obtained both as a function of elements of the inverse coefficient matrix and from the realised accuracies of GEBV. METHODS: Best linear unbiased prediction with a multi-breed genomic relationship matrix (GBLUP) and two Bayesian methods (BAYESA and BAYES_SSVS) which estimate individual SNP effects were used to predict GEBV for 400 and 77 young Holstein and Jersey bulls respectively, from a reference population of 781 and 287 Holstein and Jersey bulls, respectively. Genotypes of 39,048 SNP markers were used. Phenotypes in the reference population were de-regressed breeding values for production traits. For the GBLUP method, expected accuracies calculated from the diagonal of the inverse of coefficient matrix were compared to realised accuracies. RESULTS: When GBLUP was used, expected accuracies from a function of elements of the inverse coefficient matrix agreed reasonably well with realised accuracies calculated from the correlation between GEBV and EBV in single breed populations, but not in multi-breed populations. When the Bayesian methods were used, realised accuracies of GEBV were up to 13% higher when the multi-breed reference population was used than when a pure breed reference was used. However no consistent increase in accuracy across traits was obtained. CONCLUSION: Predicting genomic breeding values using a genomic relationship matrix is an attractive approach to implement genomic selection as expected accuracies of GEBV can be readily derived. However in multi-breed populations, Bayesian approaches give higher accuracies for some traits. Finally, multi-breed reference populations will be a valuable resource to fine map QTL.


Assuntos
Cruzamento , Bovinos/genética , Genoma , Animais , Feminino , Genótipo , Masculino , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
17.
Genet Sel Evol ; 41: 48, 2009 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-19891765

RESUMO

BACKGROUND: For dairy producers, a reliable description of lactation curves is a valuable tool for management and selection. From a breeding and production viewpoint, milk yield persistency and total milk yield are important traits. Understanding the genetic drivers for the phenotypic variation of both these traits could provide a means for improving these traits in commercial production. METHODS: It has been shown that Natural Cubic Smoothing Splines (NCSS) can model the features of lactation curves with greater flexibility than the traditional parametric methods. NCSS were used to model the sire effect on the lactation curves of cows. The sire solutions for persistency and total milk yield were derived using NCSS and a whole-genome approach based on a hierarchical model was developed for a large association study using single nucleotide polymorphisms (SNP). RESULTS: Estimated sire breeding values (EBV) for persistency and milk yield were calculated using NCSS. Persistency EBV were correlated with peak yield but not with total milk yield. Several SNP were found to be associated with both traits and these were used to identify candidate genes for further investigation. CONCLUSION: NCSS can be used to estimate EBV for lactation persistency and total milk yield, which in turn can be used in whole-genome association studies.


Assuntos
Cruzamento , Bovinos/genética , Lactação/genética , Leite/química , Animais , Bovinos/fisiologia , Feminino , Masculino , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável
18.
Genet Res (Camb) ; 91(5): 307-11, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19922694

RESUMO

Genomic selection describes a selection strategy based on genomic breeding values predicted from dense single nucleotide polymorphism (SNP) data. Multiple methods have been proposed but the critical issue is how to decide whether an SNP should be included in the predictive set to estimate breeding values. One major disadvantage of the traditional Bayes B approach is its high computational demands caused by the changing dimensionality of the models. The use of stochastic search variable selection (SSVS) retains the same assumptions about the distribution of SNP effects as Bayes B, while maintaining constant dimensionality. When Bayesian SSVS was used to predict genomic breeding values for real dairy data over a range of traits it produced accuracies higher or equivalent to other genomic selection methods with significantly decreased computational and time demands than Bayes B.


Assuntos
Cruzamento/métodos , Indústria de Laticínios/métodos , Genômica/métodos , Seleção Genética , Processos Estocásticos , Animais , Austrália , Teorema de Bayes , Bovinos , Feminino , Genoma , Masculino , Modelos Genéticos , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...